Appendix 01: Common Distributions

Appendix 01: Common Distributions#

Distribution

Common Context

PMF / PDF

Support of X

Parameter Range

E[X]

Var[X]

Bernoulli(p)

Single binary trial (e.g., coin toss)

\(P(X = x) = p^x(1 - p)^{1 - x}\)

\(x \in \{0, 1\}\)

\(0 \le p \le 1\)

\(p\)

\(p(1 - p)\)

Binomial(n, p)

Number of successes in n trials

\(P(X = k) = \binom{n}{k}p^k(1 - p)^{n - k}\)

\(k \in \{0, 1, \dots, n\}\)

\(n \in \mathbb{N},\ 0 \le p \le 1\)

\(np\)

\(np(1 - p)\)

Geometric(p)

Trials until first success

\(P(X = k) = (1 - p)^{k - 1}p\)

\(k \in \{1, 2, \dots\}\)

\(0 < p \le 1\)

\(\frac{1}{p}\)

\(\frac{1 - p}{p^2}\)

Exponential(λ)

Time until an event

\(f(x) = \lambda e^{-\lambda x}\)

\(x \in [0, \infty)\)

\(\lambda > 0\)

\(\frac{1}{\lambda}\)

\(\frac{1}{\lambda^2}\)

Normal(μ, σ²)

Measurement errors, natural phenomena

\(f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - \mu)^2}{2\sigma^2}}\)

\(x \in \mathbb{R}\)

\(\mu \in \mathbb{R},\ \sigma^2 > 0\)

\(\mu\)

\(\sigma^2\)

Uniform(a, b)

Equal probability over interval

\(f(x) = \frac{1}{b - a}\)

\(x \in [a, b]\)

\(a < b,\ a, b \in \mathbb{R}\)

\(\frac{a + b}{2}\)

\(\frac{(b - a)^2}{12}\)